Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations

Centered numerical fluxes can be constructed for compressible Euler equations which preserve kinetic energy in the semi-discrete finite volume scheme. The essential feature is that the momentum flux should be of the form f m j+ 1 2 = p̃j+ 1 2 +uj+ 1 2 f ρ j+ 2 where uj+ 2 = (uj+uj+1)/2 and p̃j+ 1 2 , f ρ j+ 1 2 are any consistent approximations to the pressure and the mass flux. This scheme thus ...

متن کامل

Entropy Stable Schemes for Compressible Euler Equations Deep Ray and Praveen Chandrashekar

A novel numerical flux for the Euler equations which is consistent for kinetic energy and entropy condition was proposed recently [1]. This flux makes use of entropy variable based matrix dissipation which can be shown to satisfy an entropy inequality. For hypersonic flows a blended scheme is proposed which gives carbuncle free solutions for blunt body flows while still giving accurate resoluti...

متن کامل

Preconditioners for Linearized Discrete Compressible Euler Equations

We consider a Newton-Krylov approach for discretized compressible Euler equations. A good preconditioner in the Krylov subspace method is essential for obtaining an efficient solver in such an approach. In this paper we compare point-block-Gauss-Seidel, point-block-ILU and point-block-SPAI preconditioners. It turns out that the SPAI method is not satisfactory for our problem class. The point-bl...

متن کامل

Explicit Two-Step Peer Methods for the Compressible Euler Equations

In atmospheric models the highest-frequency modes are often not the physical modes of interest. On the other hand severe stability constrains for the numerical integrator arise from those meteorologically irrelevant modes. A common strategy to avoid this problem is a splitting approach: The differential equation is split into two parts. The slow part is integrated with one numerical method and ...

متن کامل

Consistent Explicit Staggered Schemes for Compressible Flows Part I: the Barotropic Euler Equations

Abstract. In this paper, we build and analyze the stability and consistency of an explicit scheme for the compressible barotropic Euler equations. This scheme is based on a staggered space discretization, with an upwinding performed with respect to the material velocity only (so that, in particular, the pressure gradient term is centered). The velocity convection term is built in such a way tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2020

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2020.06.016